
Efficient storage of arbitrary
data in a Bitcoin-derived
blockchain with a large

OP_RETURN
Document version 0.4

Fredrick R. Brennan
copypaste@kittens.ph

Ronald Watkins
admin@susukino.com

September 11, 2018

mailto:copypaste@kittens.ph
mailto:admin@susukino.com


1 Introduction
Storage of arbitrary data in blockchains has been around since the
very early days of Bitcoin. This trend could even be said to hark
back to Satoshi Nakamoto, who used the coinbase field of the Bitcoin
genesis block to include the text “The Times 03/Jan/2009 Chancellor
on brink of second bailout for banks1.” Since then, arbitrary data has
found its way into the blockchain via numerous routes—the outputs of
a transaction, the OP_RETURN field, even other tricky methods such as
using P2PKH transactions.

A notable recent entry in this trend is the Memo protocol.2 Memo
implements a social network via the extended OP_RETURN size of 220
bytes found in Bitcoin Cash.3

This paper proposes a system, the Storage Utility Memory Object
(SUMO), that could be used to efficiently store data in the Susucoin
blockchain and/or other similar blockchains.

1.1 Goals
When this standards document was produced, the following goals were
taken into account:

1. Efficiency. Every byte counts on the blockchain and the goal of
this project is to make them count. Convenience for programmers

1For more examples of arbitrary data storage in the blockchain, see http://www.
righto.com/2014/02/ascii-bernanke-wikileaks-photographs.html.

2https://memo.cash/about
3Described at https://memo.cash/protocol. Similar to a SQL database’s

VARCHAR limit of 255, the limits in the “Value” column of the table are hard
limits.

1

http://www.righto.com/2014/02/ascii-bernanke-wikileaks-photographs.html
http://www.righto.com/2014/02/ascii-bernanke-wikileaks-photographs.html
https://memo.cash/about
https://memo.cash/protocol


matters, but small footprints matter more, so everything possible
was done to get a smaller size;

2. Ease of implementation. The standard must be easy to im-
plement on a variety of platforms, including web applications and
mobile apps;

3. Extensibility. It must be possible to extend the standard to
support different compression methods, different data types, and
different metadata.

SUMO’s goal is to provide a protocol that can efficiently, easily, and
extensibly store data into the blockchain in a permanent fashion.

2



2 The SUMO Protocol
SUMO is an extensible protocol that can adapt to the needs of the
implementing blockchain.

2.1 Note About SUMO’s Integers
Unless stated otherwise, all header elements are variable-length quan-
tities (VLQs), known as uintvars. A uintvar is, at its most basic, a
signed 8-bit integer that uses its sign bit to denote that another inte-
ger follows. This means that all positive values that would fit into an
unsigned integer (0-127) can still be stored in one byte, but an integer
of any size can be stored, even integers larger than those supported by
the CPU architecture.

2.2 Header
SUMO’s header is variable-length, the most expected case being two
bytes: magic number and action.

The header is as follows:
Version Flags Message number Part Total Reference︸ ︷︷ ︸ ︸ ︷︷ ︸

if multipart if reference
& first or only part

2.2.1 Version
Version is a uintvar. The first version will be 0x01.

3



2.2.2 Flags
The following flags are defined as a bitmask of a byte; 0 is false, 1 is
true:

• Bit 1: Does another byte follow this one?1

• Bit 2: Is payload a reference to other arbitrary data elsewhere on
the blockchain?

• Bit 3: Is payload multipart?

• Bit 4–5: At the discretion of implementors; could be used to add
more available compression algorithms, or for other purposes;

• Bit 6–8: A three-bit integer that represents a compression algo-
rithm.

Available Compression Algorithms

• 000: Uncompressed;

• 001–111 (1–7): At the discretion of implementors.

As all blockchains are different, it is difficult to predict the type of
data that would be stored. Generally, because short strings are being
stored, entropy encoders are preferrable; Zstandard is an example of
an entropy encoder. If mostly ASCII or Latin-1 text will be stored,
Shoco is a good choice; for the string “There was an old man in London
named Trent,” it achieves a compression ratio of 26% as of June 28,
2018.2.

It is quite likely implementors will want to store multiple different
types of data. As long as all clients agree on which three-bit integer
refers to which deflation method, this is not a problem. Encoders need
not necessarily know how to encode all the methods, but decoders

1This could be used to implement more options, like adding other data to the header
at the discretion of implementors.

2From the Shoco demo: http://ed-von-schleck.github.io/shoco/

4

http://ed-von-schleck.github.io/shoco/


must. As the input strings are short, a competent encoder will try to
compress the input with all available options to find the best one for
the data.

For example, if you want to store both Japanese and Chinese text,
Zstandard could be trained against the input of Japanese and Chinese
Wikipedia database dumps, stripped of extra characters, to produce
two dictionaries. Japanese.dict + Zstandard could be assigned to
compression Method 1, and Chinese.dict + Zstandard assigned to
Method 2, with methods 3–7 reserved for future assignment. If you
later want your blockchain to support the storage of compressed PNG
files, you could add a PNG compression algorithm to the reserved
Method 3.

2.2.3 Message Number
Message number is a uintvar. This is used to differentiate between
different multipart messages sent from the same address. All parts of
a message must be sent from the same address. As this is a uintvar,
if more than 127 messages are sent from one address, there will be two
bytes.

2.2.4 Part & Total
Part and total are uintvar. They are used in multipart messages.
Except for large amounts of data, these will usually be one byte. With
a maximum OP_RETURN of 256 bytes, and a header of five bytes, a
payload of ≃ 32KB can be stored with one-byte part and total. It
is up to clients to decide how much arbitrary data they would like to
support in their implementation of the SUMO Protocol.

2.2.5 Reference
A reference is a 32-byte transaction ID, used if the input data is a
concatenate to other data from the same subset. Multiple transactions
can be referenced to by delimiting them with byte 0x1D. In the pay-
load, use 0x1A to insert a reference to the leftmost non-nothing value.

5



For multiple transactions, put an ASCII digit after the transaction, like
0x1A 0x32 (ASCII ‘2’). The maximum amount of data that can be ref-
erenced to depends on the implementation of the parent blockchain’s
maximum OP_RETURN size.

2.3 Payload
The payload contains the non-header data to be stored. The payload
can be either compressed or uncompressed, depending on the header
flags. This is to prevent the compression algorithm from doing more
harm than good because compression ratios can sometimes be greater
than 1.0. Since a compression algorithm does not signify the type of
data being stored, a compression algorithm made for one type of data
might compress a different kind of data more efficiently and may be
chosen by the encoder. Implementing clients must mark the type of
data in the payload itself. For example, if you need to disambiguate
UTF-8 text, ASCII text and SHIFT_JIS, you could 1) use a byte-
order mark (BOM) for UTF-8; 2) rely on a heuristic guarantee that
all bytes in the 0-127 range represent ASCII text; and 3) consider all
other input to be SHIFT_JIS.

2.4 Security
Security is a concern with all software. Even though the SUMO Pro-
tocol was created to be easily implemented while respecting the need
to save as much space as possible, it still allows the use of compression,
and is therefore vulnerable to zip bomb attacks. Care should be taken
by implementing clients to limit the amount of RAM they are willing
to spend, e.g., ZSTD_DCtx_setMaxWindowSize.

As the SUMO Protocol is variable-length, frequent sanity checks
are highly encouraged. A memory-safe compiled language like Rust or
Haskell could be used and then included in other programs via foreign
function interfaces (FFIs).

6



3 Examples
The SUMO Protocol could be implemented for various applications,
such as community migrations to alternative online platforms focused
on free speech or the free exchange of ideas among individuals from
countries with authoritarian regimes or in a world with increasingly
powerful multinational corporations who believe it is their job to police
speech.

An example of a hypothetical three-bit compression header flag could
be:

• 000: Uncompressed;

• 001: Zstandard with a dictionary trained against SHIFT_JIS;

• 010: Shoco, trained against English;

• 011: Shoco, trained against Spanish;

• 100: Zstandard with a large dictionary trained against numerous
Wikipedia articles;

• 101: Brotli (LZ77);

• 110: Unused;

• 111: Unused.

7



4 Final Remarks
Free speech is under siege from misguided policymakers passing speech-
restrictive legislation; special-interest groups and state actors employ-
ing agents to disrupt the operations of organized activists and con-
cerned citizens; and giant multinational corporations trying to moder-
ate speech out of their platforms using restrictive terms and conditions
as a cover for the deep-seated political biases of top executives. As
such, by enabling the free exchange of thoughts, opinions, and ideas
through the addition of data to a blockchain, the SUMO Protocol
boasts various speech-protective applications that could help further
individual liberty.

8


	Introduction
	Goals

	The SUMO Protocol
	Note About SUMO's Integers
	Header
	Version
	Flags
	Message Number
	Part & Total
	Reference

	Payload
	Security

	Examples
	Final Remarks

